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The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic
tokamak X-point geometry with the nonlinear reduced MHD code JOREK. The diamagnetic rotation is
found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction
and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal
gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM
power deposition on the inner and outer divertor target plates, consistent with experimental measurements.
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Introduction.—Edge localized modes (ELMs) are mag-
netohydrodynamic (MHD) instabilities occurring in fusion
plasmas in high confinement regime (H-mode) of toka-
maks and occasionally in stellerators, and are sometimes
compared in the early stage of their development with the
solar flares occurring in astrophysical plasmas [1]. As the
ELMs represent a particular concern for the lifetime of
the divertor in ITER [2], their dynamics has been widely
studied experimentally and theoretically [3–6]. In X-point
tokamak plasmas, MHD instabilities develop due to a large
edge pressure gradient (so-called ballooning modes) or a
large edge current (so-called peeling-tearing modes), trig-
gering the formation of ELM filaments. The ELMs consist
in the quasiperiodic ejection of these filaments in H-mode
regimes across the transport barrier at the plasma edge (also
called pedestal).
So far, nonlinear MHD computations with codes such as

M3D [7], BOUT++ [8,9], NIMROD [10], and JOREK [11–13]
have been able to reproduce a single ELM crash in
simulations, in realistic tokamak geometry. Other works
using a model including two-fluid diamagnetic effects
[14,15] have shown transport bursts comparable to ELM
relaxations in simplified cylindrical geometry. This Letter
presents the first simulations of a multi-ELM cycle in
realistic toroidal geometry, using the nonlinear reduced
MHD code JOREK [11] recently extended to add the
two-fluid diamagnetic effects [16]. The diamagnetic effects
are known to have a stabilizing effect on plasma insta-
bilities. They are shown to prevent the magnetic field from
reconnecting and/or to reduce the growth rate of ideal and
resistive instabilities in both astrophysical [17] and labo-
ratory plasmas [18–20]. In particular, in tokamaks, they are
evidenced to be a key parameter for simulating cycles of

sawtooth crashes [21]. We show here that the diamagnetic
rotation is also a key parameter for modeling the ELM
cycling dynamics: as the diamagnetic effects stabilize
peeling-ballooning instabilities after an ELM crash, they
allow for the pedestal to rebuild, thus leading to an ELM
cycle. This approach is different and complementary to that
in Ref. [22] in which it is an externally imposed E × B
stabilization in the plasma edge that allows for oscillation
relaxations.
Multi-ELM cycle simulations.—Experimentally, ELM

relaxations consist in a cyclical phenomenon, resulting
in the quasiperiodic deposition of energy on the divertor
target plates. Modeling this phenomenon requires to
reproduce this cyclical behavior. Besides, the simulation
of ELM cycles rather than a single ELM crash, which
depends on the initial unstable pressure profile, involves
different physical mechanisms. Indeed, after the first ELM
crash, memory of the choice for the initial pressure profile
is lost. The phase coherence between modes that deter-
mines the ELM instability growth dynamically evolves,
nonlinearly, through the heat, particle, and current sources.
And so is the energy distribution among the toroidal
harmonics. In this respect, an ELM crash starting from
such a coherent state is significantly different from a first
initial relaxation triggered by the choice of an initial state.
This Letter discusses the specificities of the multiple ELM
dynamics starting from consistent inter-ELM states with
respect to the usual single ELM relaxation from an initial
chosen condition.
As we consider long runs of ELM-cycle simulations

(>104 Alfvén times ∼10−2 s), we have to deal with very
different time scales: the diffusive time scale τD∼
a2=D⊥∼10−1 − 1 s (D⊥ being the perpendicular diffusion
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coefficient), the time scale of the pedestal reconstruction
after an ELM (∼10−3 − 10−1 s), and the ELM crash time
scale (∼10−4 s). Thus, the presence of heat and particle
sources—needed to rebuild the pedestal after an ELM—as
much as diffusion propagating the heat and particles, is
essential in the simulations. The heat source is chosen to
follow the initial temperature profile and the particle source
is taken constant over the plasma. Heat and particle
diffusion coefficients are reduced in the pedestal in order
to preserve a transport barrier at the plasma edge and a
3-cm-large pedestal. The injected heat and particle sources
determine the pedestal reconstruction time scale and thus,
the simulated ELM frequency. As for the current profile,
it is driven back close to the initial realistic current profile
J0 (including Ohmic and bootstrap components) after an
ELM crash, using the Krook operator ηðJ − J0Þ in the
Ohms law (η being the plasma resistivity). An ongoing
work aims at implementing a self-consistently evolving
bootstrap current.
In this Letter, ELM cycles are modeled for Joint

European Torus (JET)-like plasma parameters and geom-
etry, similar to Ref. [16]: major radius R0 ¼ 3 m, minor
radius a ¼ 1 m, toroidal magnetic field Bt ¼ 2.9T, and
safety factor q95∼3. Established H-mode experimental
profiles are taken initially, with central electron density
ne;0 ¼ 6 × 1019 m−3 and central temperature Te;0 ¼
5 keV. The pedestal density and temperature are ne;ped ¼
3.8 × 1019 m−3 and Te;ped ¼ 2.5 keV. Ion and electron
temperatures are assumed to be equal. Because of computa-
tional restrictions, the central resistivity is taken
η0 ¼ 2.5 × 10−7 Ω · m,which is 2 orders ofmagnitude larger
than the Spitzer resistivity ηSpitzer ¼ 2.5 × 10−9 Ω · m.
The resistivity profile follows a T−3=2 radial dependence.
A JETrealistic diamagnetic velocity is taken for both species s

(ionsandelectrons): ~V�
s ¼ ZsðR=R0Þ2τIC=ρ·~b × ∇Ps.Zs and

Ps are, respectively, the charge number and the scalar pressure
of the species s, R is the horizontal coordinate, ρ is the

mass density, and ~b is the magnetic field normalized to Bt.
The realistic value of the diamagnetic parameter (inverse of
the ion cyclotron frequency) τIC ¼ mi=eBt∼7 × 10−9 s is
taken. The equilibrium value of the diamagnetic velocities in
the pedestal is V�

i ¼ −V�
e ≈ 2 × 104 m=s, which is in the

ballpark of the experimental observations [23]. The full
description of the model is given on Ref. [16]. Compared
to Ref. [16], the source of parallel rotation SV jj and the

neoclassical friction (∇̄ · Π̄i;neo term) are not included in the
modeling to focus only on the impact of the diamagnetic
flow on the ELM dynamics.
A simulation is run as follows: once the axisymmetric

(n ¼ 0) equilibrium flows are established (mainly due to
diamagnetic drifts and sheath conditions [16]), the toroidal
modes of perturbation n ¼ 2; 4; 6, and 8 are added in
simulation. Linear runs show that the n ¼ 8 mode is the
most unstable mode in this configuration, as the larger

n > 9 modes are stabilized by the diamagnetic effects. The
grid resolution (102 points in the radial direction, 128 in the
poloidal one) is chosen such that the mode structures up to
n ¼ 8 are well resolved. Further coupling with high n > 9
modes is likely to happen as well as coupling with modes of
odd parity and should be added if more quantitative
predictions are required. Quantitatively addressing these
questions during an ELM cycle is, however, currently
beyond the scope of our numerical capabilities. In the
present Letter, the focus is on the ELM behavior in
quasiperiodic cycles. Interestingly, it is found to signifi-
cantly differ from the oft-computed single-ELM crash.
In ELM simulations without diamagnetic effects, the

ballooning and/or peeling-tearing instabilities at the onset
on the ELM crash generate the stochastization of the edge
magnetic field. Yet after the ELM crash, the MHD activity
is not fully stabilized and the edge magnetic field remains
stochastic: the residual MHD activity still generates
an enhanced edge transport that does not allow for the
pedestal reconstruction. Therefore, a second ELM crash
cannot be obtained as the plasma remains below the
peeling-ballooning stability limit. An example is given
for a single n ¼ 8 ELM (only the n ¼ 0 and n ¼ 8 modes
are included in the simulation) modeled without taking
into account the diamagnetic effects (Fig. 1): during the
ELM crash, characterized by a large peak of kinetic and
magnetic energy of the n ¼ 8 mode (Fig. 1), the plasma
edge is stochastized in a large extent: the region for
normalized flux ψnorm > 0.85 is fully reconnected
[Figs. 2(a) and 2(c)]. After the crash, the instability does
not completely vanish (Fig. 1) and the magnetic field
remains partially reconnected: large magnetic islands sub-
sist for ψnorm > 0.85 and an ergodic layer remains for
ψnorm > 0.95 [Figs. 2(b) and 2(d), given for t∼7 × 103tA].
Thus, the edge transport remains high due to both the
stochastic layer enhancing the heat parallel diffusivity and
the E × B convection of particles.
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FIG. 1 (color online). Magnetic and kinetic energies of the
n ¼ 8 mode without diamagnetic effects. The time in x axis is
normalized to the Alfvén time tA.
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However, the addition of the diamagnetic rotation in
modeling has two major effects: first, the amplitude of the
ELM crash is smaller due to the diamagnetic stabilization,
and second, the n ¼ 8mode is completely damped after the
crash. The plasma is actually stabilized by the diamagnetic
effects after the crash, but is not destabilized again until the
pedestal pressure gradient that increases due to the injected
heat source reaches the ELM-triggering threshold. Then, a
second ELM crash occurs, and so forth. The simulation of a
multi-ELM cycle (multiharmonic simulation n ¼ 0 to 8 by
step 2) is presented in Fig. 3. The ELM energy is one order
of magnitude smaller than in Fig. 1 due to the diamagnetic
stabilization. The ELM cycle can be decomposed into two
parts: transient ELMs—from t ¼ 3200tA to t ¼ 6200tA—
are followed by a quasiperiodic repetitive regime. The
system evolves from a state depending on the initial
conditions towards a quasiperiodic cycling regime which
mainly depends on the injected heat and particles and on
the diamagnetic frequency. The three first transient ELMs
are largely dominated by the most unstable mode (first,
n ¼ 8 and then, n ¼ 6) and there is only a few coupling
between modes. However, after four ELMs, we get a
quasiperiodic regime driven by the n ¼ 2–8 modes
strongly nonlinearly coupled with each other. Each ELM
in this regime is initiated by the growth of the n ¼ 6 mode
directly followed by the coupled growth of the other modes.

After a crash, because of the quick refilling of the pedestal
by the heat and particle sources, the plasma is barely
stabilized by the diamagnetic effects before being desta-
bilized again by the increase in pressure gradient: this leads
to a large frequency (fELM∼3 kHz, fELM normalized to
Afvén time ∼1.6 × 10−3) of small ELMs. Each ELM in the
quasiperiodic regime is characterized by the collapse of the
edge pressure gradient, presented in Fig. 4. This pedestal
relaxation occurs when a threshold in pressure gradient—
corresponding to the ELM triggering threshold—is
reached. The peeling-ballooning diagram (maximal pres-
sure gradient as a function of the mean pedestal current
Fig. 5) shows that these ELM are constituted of three steps:
the linear growth of the instability as the pressure gradient
increases, then the ELM crash—occurring at approximately
the same threshold for all the ELMs in quasiperiodic
regime—and last, the relaxation of the density and
temperature profiles. The increase of the pressure gradient

FIG. 2. Magnetic field topology in the n ¼ 8 ELM simulation
without diamagnetic effect, given at the peak of the ELM crash
(a)–(c) and after the ELM crash at t∼7 × 103tA (b)–(d). The
Figs. 2(a) and 2(b) show the Poincaré plot of the magnetic
topology in the poloidal plane, and the Fig. 2(c) [respectively,
2(d)] is a zoom of the plasma edge of the Fig. 2(a) [respectively,
2(b)] in (ψ , θ) coordinates for a normalized flux ψ ≥ 0.8. Note the
full edge reconnection at the peak of the crash (destroyed
magnetic surfaces) and the remaining partial reconnection after
the crash (island structures with an ergodic very edge).
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FIG. 3 (color online). Kinetic energy of the modes n ¼ 2–8 in
the multiharmonic n ¼ 0∶2∶8 simulation with diamagnetic
effects.
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FIG. 4 (color online). Pedestal pressure gradient normalized
over flux surfaces before (dash line), during (dash-dot line), and
after (full line) the ELM crash.
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in the pedestal due to the heat source is going together with
the increase of the rotational shear at the plasma edge,
due to the increase in diamagnetic velocity proportional to
the pressure gradient. At the ELM crash, an n ¼ 0 flow is
induced by Maxwell stress [24], increasing the edge rota-
tional shear. The plasma filaments are then sheared by this
(n ¼ 0) flow and expelled out of the plasma.
Near-symmetric deposition on divertor.—After a small

delay (∼100tA) corresponding to the ion parallel time
τjj;i ¼ πqR=cs (where cs is the sound speed), the energy
and particles due to the ELM filaments reach the divertor
target plates at the sound speed. The particles are convected
by E × B and diamagnetic drifts while the energy is mainly
transported by parallel conduction. Although the power
deposition due to the four first ELMs is very variable, the
integrated peak power deposited by an ELM on the divertor
(Fig. 6) is approximately the same for all the ELMs in
quasiperiodic regime (∼5–6 MW on the outer divertor,
∼2–3 MW on the inner divertor). This again shows that the
first ELMs before reorganization are singular. Note that

in quasiperiodic regime, the peak power deposition on the
inner divertor is slightly delayed (by ∼50tA) compared to
the outer deposition: because of the ballooning character of
the instabilities, the filaments are mostly expelled from the
low field side, so the filaments first hit the outer target.
Furthermore, the deposition on the inner and outer

divertor targets is observed to be near symmetric in this
simulation: the integrated deposited power has the same
order of magnitude on both targets, even though roughly
2 times more power is deposited on the outer divertor
target. Experimentally, the peak power deposition is either
symmetric on inner or outer targets, or the inner target
receives twice more power [25,26] after a crash. In previous
modeling performed without diamagnetic drifts, the outer
target received almost all the ELM power deposition, which
was contrary to the experimental observations. An n ¼ 2–8
ELM simulation is performed with realistic JET parameters
corresponding to the shot #77329 described in [27] for two
different cases: one without including flows in the model
(full line in Fig. 7) and one with diamagnetic effects,
neoclassical friction and toroidal source of rotation
included (dash line in Fig. 7). In the case without flows,
almost all the heat flux generated by the ELM filaments is
deposited on the outer divertor, whereas in the case where
flows are included in the model, the deposited heat flux is
near symmetric on the inner and outer divertor targets
(Fig. 7). Therefore, even though the filaments are mostly
expelled from the outer region and the heat transport is
mainly diffusive in direction of the outer region, the particle
convection towards the inner region is enhanced by the
diamagnetic flow, leading to a near-equal repartition of the
power (proportional to density and temperature) on inner
and outer divertor plates. Hence, plasma flows and, in
particular, the two-fluid diamagnetic drifts allow for sim-
ulating more realistically the ELM cyclical dynamics up to
the deposition on divertor.
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FIG. 5 (color online). Peeling-ballooning diagram: evolution of
the maximum pressure gradient as a function of the mean pedestal
current in quasiperiodic regime. The time between two points is
20tA, and each color represents one ELM.
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2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.5

1

1.5

2

2.5

3

R(m)

G
W

/m
2

w/o flows
with flows

inner divertor

outer
divertor

FIG. 7 (color online). Radial distribution of the heat flux (in
GW=m2) reaching the inner and outer divertor target plates:
without flows included in simulation (full line) or with diamag-
netic, neoclassical, and toroidal flows (dashed line).

PRL 114, 035001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

23 JANUARY 2015

035001-4



Discussion and conclusions.—Even though computa-
tional restrictions impose to choose in the simulation a
plasma resistivity that is 2 orders of magnitude larger than
the realistic value, the modeling of these resistive ELMs
represents a significant step forward in the understanding
of the cycling dynamics. The addition of the two-fluid
diamagnetic rotation in MHD models allows for the
stabilization of the plasma after an ELM relaxation. The
plasma reorganizes and memory of the initial pressure
profile is lost. The phasing and the energy repartition
between modes is consistently determined. The steepening
of the pressure profile generated by the pedestal
reconstruction destabilizes again the edge plasma until
the edge pressure gradient reaches the ELM-triggering
threshold: a new ELM crash then occurs. Similar coupling
between modes, similar maximal pressure gradient reached
when the crash occurs, and similar power deposition on the
divertor plates are cyclically recovered for all the ELMs in
the quasiperiodic regime. These differ much from the first
transient ELMs, pointing out the importance of simulating
cycles rather than a single ELM crash. In addition, the
inclusion of the diamagnetic drifts induces a near-
symmetric ELM power deposition on the inner and outer
divertor target plates, which is in closer agreement with
experimental measurements.

This work has been carried out within the framework of
the EUROfusion Consortium. It has received funding from
the European Union Horizon 2020 research and innovation
programme under grant agreement number 633053 and
from the National French Research Program (ANR):
ANEMOS (2011) and E2T2 (2010). This work was granted
access to the HPC resources of Aix-Marseille Université
financed by the project Equip@Meso (ANR-10-EQPX-29-
01). A part of this work was carried out using the HELIOS
supercomputer system (IFERC-CSC), Aomori, Japan,
under the Broader Approach collaboration, implemented
by Fusion for Energy and JAEA, and using the CURIE
supercomputer, operated into the TGCC by CEA, France,
in the framework of GENCI and PRACE projects. The
views and opinions expressed herein do not necessarily
reflect those of the European Commission or the ITER
Organization.

[1] W. Fundamenski, V. Naulin, T. Neukirch, O. E. Garcia, and
J. J. Rasmussen, Plasma Phys. Controlled Fusion 49, R43
(2007).

[2] A. Loarte et al., Plasma Phys. Controlled Fusion 45, 1549
(2003).

[3] P. Gohil et al., Phys. Rev. Lett. 61, 1603 (1988).
[4] H. Zohm, Plasma Phys. Controlled Fusion 38, 105 (1996).
[5] A. Kirk, H. Wilson, G. Counsell, R. Akers, E. Arends,

S. Cowley, J. Dowling, B. Lloyd, M. Price, and M. Walsh
(MAST Team), Phys. Rev. Lett. 92, 245002 (2004).

[6] H. R. Wilson and S. C. Cowley, Phys. Rev. Lett. 92, 175006
(2004).

[7] L. E. Sugiyama, and H. R. Strauss, Phys. Plasmas 17,
062505 (2010).

[8] X. Q. Xu, B. D. Dudson, P. B. Snyder, M. V. Umansky,
H. R. Wilson, and T. Casper, Nucl. Fusion 51, 103040
(2011).

[9] P. W. Xi, X. Q. Xu, and P. H. Diamond, Phys. Rev. Lett.
112, 085001 (2014).

[10] C. R. Sovinec, D. C. Barnes, R. A. Bayliss, D. P. Brennan,
E. D. Held, S. E. Kruger, A. Y. Pankin, D. D. Schnackand,
and (the NIMROD Team), J. Phys. Conf. Ser. 78, 012070
(2007).

[11] G. T. A. Huysmans, S. Pamela, E. van der Plas, and P.
Ramet, Plasma Phys. Controlled Fusion 51, 124012 (2009).

[12] I. Krebs, M. Hölzl, K. Lackner, and S. Günter, Phys.
Plasmas 20, 082506 (2013).

[13] S. J. P. Pamela, G. T. A. Huijsmans, A. Kirk, I. T. Chapman,
J. R. Harrison, R. Scannell, A. J. Thornton, M. Becoulet,
and F. Orain, Plasma Phys. Controlled Fusion 55, 095001
(2013).

[14] R. G. Kleva, and P. N. Guzdar, Phys. Plasmas 14, 012303
(2007).

[15] A. Thyagaraja, M. Valovič, and P. J. Knight, Phys. Plasmas
17, 042507 (2010).

[16] F. Orain et al., Phys. Plasmas 20, 102510 (2013).
[17] M. Swisdak, M. Opher, J. F. Drake, and F. A. Bibi,

Astrophys. J. 710, 1769 (2010).
[18] J. F. Drake, T. M. Antonsen, Jr., A. B. Hassam, and N. T.

Gladd, Phys. Fluids 26, 2509 (1983).
[19] P. H. Diamond, P. L. Similon, T. C. Hender, and B. A.

Carreras, Phys. Fluids 28, 1116 (1985).
[20] G. T. A. Huysmans, S. E. Sharapov, A. B. Mikhailovskii,

and W. Kerner, Phys. Plasmas 8, 4292 (2001).
[21] F. D. Halpern, H. Lütjens, and J-F. Luciani, Phys. Plasmas

18, 102501 (2011).
[22] P. Beyer, S. Benkadda, G. Fuhr-Chaudier, X. Garbet, Ph.

Ghendrih, and Y. Sarazin, Phys. Rev. Lett. 94, 105001
(2005).

[23] T. Tala et al., Nucl. Fusion 47, 1012 (2007).
[24] G. T. A. Huysmans, and O. Czarny, Nucl. Fusion 47, 659

(2007).
[25] R. A. Pitts, P. Andrew, G. Arnoux, T. Eich, W. Fundamenski,

A. Huber, C. Silva, and D. Tskhakaya, Nucl. Fusion 47, 1437
(2007).

[26] T. Eich, A. Herrmann, and J. Neuhauser (ASDEX Upgrade
Team), Phys. Rev. Lett. 91, 195003 (2003).

[27] M. Bécoulet et al., Nucl. Fusion 52, 054003 (2012).

PRL 114, 035001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

23 JANUARY 2015

035001-5

http://dx.doi.org/10.1088/0741-3335/49/5/R01
http://dx.doi.org/10.1088/0741-3335/49/5/R01
http://dx.doi.org/10.1088/0741-3335/45/9/302
http://dx.doi.org/10.1088/0741-3335/45/9/302
http://dx.doi.org/10.1103/PhysRevLett.61.1603
http://dx.doi.org/10.1088/0741-3335/38/2/001
http://dx.doi.org/10.1103/PhysRevLett.92.245002
http://dx.doi.org/10.1103/PhysRevLett.92.175006
http://dx.doi.org/10.1103/PhysRevLett.92.175006
http://dx.doi.org/10.1063/1.3449301
http://dx.doi.org/10.1063/1.3449301
http://dx.doi.org/10.1088/0029-5515/51/10/103040
http://dx.doi.org/10.1088/0029-5515/51/10/103040
http://dx.doi.org/10.1103/PhysRevLett.112.085001
http://dx.doi.org/10.1103/PhysRevLett.112.085001
http://dx.doi.org/10.1088/1742-6596/78/1/012070
http://dx.doi.org/10.1088/1742-6596/78/1/012070
http://dx.doi.org/10.1088/0741-3335/51/12/124012
http://dx.doi.org/10.1063/1.4817953
http://dx.doi.org/10.1063/1.4817953
http://dx.doi.org/10.1088/0741-3335/55/9/095001
http://dx.doi.org/10.1088/0741-3335/55/9/095001
http://dx.doi.org/10.1063/1.2424560
http://dx.doi.org/10.1063/1.2424560
http://dx.doi.org/10.1063/1.3381074
http://dx.doi.org/10.1063/1.3381074
http://dx.doi.org/10.1063/1.4824820
http://dx.doi.org/10.1088/0004-637X/710/2/1769
http://dx.doi.org/10.1063/1.864441
http://dx.doi.org/10.1063/1.865406
http://dx.doi.org/10.1063/1.1398573
http://dx.doi.org/10.1063/1.3646305
http://dx.doi.org/10.1063/1.3646305
http://dx.doi.org/10.1103/PhysRevLett.94.105001
http://dx.doi.org/10.1103/PhysRevLett.94.105001
http://dx.doi.org/10.1088/0029-5515/47/8/036
http://dx.doi.org/10.1088/0029-5515/47/7/016
http://dx.doi.org/10.1088/0029-5515/47/7/016
http://dx.doi.org/10.1088/0029-5515/47/11/005
http://dx.doi.org/10.1088/0029-5515/47/11/005
http://dx.doi.org/10.1103/PhysRevLett.91.195003
http://dx.doi.org/10.1088/0029-5515/52/5/054003

