Heat Diffusion
in realistic Tokamak Geometry

Matthias Hölzl, Sibylle Günter, and the ASDEX Upgrade Team

Ringberg Theory Workshop
Max-Planck-Institut für Plasmaphysik

17.11.2008
Outline

1 Motivation

2 Model
 - Heat Diffusion Equation
 - Coordinate system
 - Coordinate alignment

3 Magnetic Islands
 - Temperature flattening
 - Comparison to TEXTOR

4 Ergodic Layers
 - Temperature flattening
 - FIR-NTMs

5 Edge Ergodization

6 Summary
Motivation

Safety Factor

“Safety factor” \(q \): Number of toroidal turns per poloidal turn

\[\nu = 1/q \]
Poincaré plot: Field lines traced for many toroidal turns
2/1 magnetic island at $q = 2$ surface
Heat Diffusion in realistic Tokamak Geometry

Motivation

Temperature flattening

- Temperature profile flattens inside the magnetic island
- Bootstrap current $\propto \nabla p$ perturbed \Rightarrow Island drive (NTM)

M. Hölzl, S. Günter
Heat Diffusion in realistic Tokamak Geometry

Model

1 Motivation

2 Model
 - Heat Diffusion Equation
 - Coordinate system
 - Coordinate alignment

3 Magnetic Islands
 - Temperature flattening
 - Comparison to TEXTOR

4 Ergodic Layers
 - Temperature flattening
 - FIR-NTMs

5 Edge Ergodization

6 Summary

M. Hölzli, S. Günter
Steady State Heat Diffusion Equation

$$\nabla \cdot \mathbf{q} = P,$$ where $$\mathbf{q} = -n_e \left(\chi_\parallel \nabla_\parallel T + \chi_\perp \nabla_\perp T \right)$$

q: heat flux, P: energy source, n_e: electron density, χ_\parallel and χ_\perp: heat diffusivities

Anisotropy

$$\chi \equiv \chi_\parallel / \chi_\perp \approx 10^8 \ldots 10^{10}$$

Finite Difference Scheme

see Günter et al. (2005)

- Two staggered grids
- Low numerical diffusion
- Coordinate alignment not required
- Realistic anisotropies
Curvilinear Coordinate System

- Heat diffusion eq. in tensor notation:

\[
\frac{1}{\sqrt{g}} \frac{\partial}{\partial u^\alpha} (\sqrt{g} q^\alpha) = P
\]

\[
q^\alpha = -n_e \chi_\perp \left[\chi b^\alpha b^\beta + g^{\alpha\beta} \right] \frac{\partial T}{\partial u^\beta}
\]

- \(q^\alpha\): Contravariant heat flux components
- \(u^\alpha\): Contravariant coordinates (\(\rho\), \(\theta\), \(\phi\))
- \(g^{\alpha\beta}\): Metric tensor components
- \(g = \det[g^{\alpha\beta}]\): Determinant of the covariant metric tensor

- Axisymmetric straight field line coordinates
Coordinate Alignment to Unperturbed Magnetic Field

- Coordinate Transformation \(\theta = \tilde{\theta} - \iota \cdot \phi \)
 \(\Rightarrow \) Sheared helical coordinates

\(\iota = 1/q \): Inverse safety factor

- Problems:
 - Grid deformation
 - Interpolation for toroidal periodicity condition \(T_{\phi=0} \equiv T_{\phi=2\pi} \)
 increases numerical diffusion
 - Restriction \(\chi_{||}/\chi_{\perp} \lesssim 10^7 \) \(\times \)
Partial Coordinate Alignment

- Transformation $\theta = \tilde{\theta} - \iota_c \cdot \phi$
 \[\iota_c \equiv \text{const} \]
 \Rightarrow Unsheared helical coordinates

- Realistic anisotropies ✔

Restrictions due to the Misalignment?

- Islands resolved well for: $N_\phi \gtrsim \Delta t \cdot N_\theta$
 \[\Delta t = |t - \iota_c|: \text{misalignment at island} \]
 N_ϕ, N_θ: toroidal and poloidal grid point numbers

- Suitable for magnetic perturbations with similar helicities
- Islands with very different helicities increase the numerical effort
Heat Diffusion in realistic Tokamak Geometry

Magnetic Islands

1. Motivation
2. Model
 - Heat Diffusion Equation
 - Coordinate system
 - Coordinate alignment
3. Magnetic Islands
 - Temperature flattening
 - Comparison to TEXTOR
4. Ergodic Layers
 - Temperature flattening
 - FIR-NTMs
5. Edge Ergodization
6. Summary
Heat Transport across Magnetic Islands

see Fitzpatrick (1995); Yu (2006); Hölz et al. (2007)

- Scale island width \(w_c \propto (\chi_\parallel / \chi_\perp)^{-0.25} \)

\[
\begin{align*}
\frac{w}{w_c} \begin{cases}
\ll 1 & \text{No perturbation} \\
\gg 1 & \text{Temperature flattening}
\end{cases}
\end{align*}
\]

- Heat conduction layer at the separatrix
- Temperature flattening destabilizes NTMs (perturbation of the bootstrap current)
- This talk: Realistic tokamak geometry
Heat Diffusion in realistic Tokamak Geometry

Magnetic Islands

Temperature flattening

- ASDEX Upgrade equilibrium
- 3/2 island with $w = 8.1$cm

$\theta = 0$: Low field side $\theta = \pi$: High field side

M. Hölz, S. Günter
Heat Diffusion in realistic Tokamak Geometry

Magnetic Islands

Temperature flattening

- ASDEX Upgrade equilibrium
- 3/2 island with $w = 8.1\text{cm}$

$\theta = 0$: Low field side $\theta = \pi$: High field side
Comparison to TEXTOR (preliminary)

Data provided by Ivo Classen (see Classen (2007))

- 2/1 island triggered by DED coils
- Mode frequency 1 kHz
- ECE frequency 100 kHz
- Channels cover part of the island (including x-point)
- Channels not cross-calibrated
- Comparing during growth phase

Aim: Draw conclusions for experimental $\chi_{||}/\chi_{\perp}$

TEXTOR: Tokamak experiment in Jülich with a circular plasma cross section

DED coils: Set of perturbation coils at TEXTOR (Dynamic ergodic divertor)

ECE: Diagnostic measuring the electron temperature (Electron cyclotron emission spectroscopy)
Timetrace of an ECE channel

TEXTOR #99175 (channel 05-08)
Numerical simulation

- Code runs with different $\chi_{||}/\chi_{\perp}$, power source, energy source, ...
- Toroidal temperature cuts:
Automatic matching

- Adding calibration-summands to the ECE channel signals
- Best-fitting numerical code run for each experimental timepoint

![Simulation plot](image-url)
Problems

- Sudden change of the island structure as the mode locks to the DED perturbation field
- Best fitting $\chi_\parallel / \chi_\perp$ changes strongly

Reasons?

- Perturbation profile?
- Higher harmonics (4/2, . . .)?
- Different modes excited by DED coils (3/1, . . .)?

Additional Comparisons planned

- ECRH heating at magnetic island
- ASDEX Upgrade with new ECE diagnostic
Heat Diffusion in realistic Tokamak Geometry

Ergodic Layers

1. Motivation
2. Model
 - Heat Diffusion Equation
 - Coordinate system
 - Coordinate alignment
3. Magnetic Islands
 - Temperature flattening
 - Comparison to TEXTOR
4. Ergodic Layers
 - Temperature flattening
 - FIR-NTMs
5. Edge Ergodization
6. Summary

M. Hözl, S. Günter

Ringberg Theory
Heat Diffusion across an Ergodic Layer

- Overlapping magnetic islands produce an ergodic layer
- Chaotic field line trajectories

\[\frac{\chi_{||}}{\chi_{\perp}} = \begin{cases}
\text{small: single island effects dominate} \\
\text{large: ergodisation increases transport}
\end{cases} \]
- Overlapping $3/2$ and $4/3$ islands
- Chirikov parameter $\sigma_{Ch} = 1.52$

$\theta = 0$: Low field side \quad \theta = \pi$: High field side
Overlapping 3/2 and 4/3 islands

Chirikov parameter $\sigma_{Ch} = 1.52$

$\theta = 0$: Low field side \hspace{1cm} \theta = \pi$: High field side
FIR-NTMs

FIR-NTM: Neoclassical tearing mode in the frequently interrupted regime

see Günter et al. (2001) and Gude et al. (2002)

- Frequent interruption of NTM growth by sudden amplitude drop
- Much faster than the resistive timescale
- Observed at large normalized plasma pressure β_N (i.e. large bootstrap current fraction)

![Graph showing even n signal over time](ASDEX Upgrade #10192)
FIR-NTMs

- Island \Rightarrow T flattening \Rightarrow bootstrap current perturbation \Rightarrow NTM
- Considering $3/2$ NTM and additional $4/3$ perturbation
- Resonant bootstrap current perturbation strongly reduced for $\chi_{||}/\chi_{\perp} \gtrsim 1 \cdot 10^9$ and $\sigma_{Ch} \gtrsim 1.4 \Rightarrow$ Less island drive
- $4/3$ perturbation expected to be ideal (timescale!)

\[\begin{array}{c}
\chi_{||}/\chi_{\perp} = 4 \cdot 10^6 \\
\chi_{||}/\chi_{\perp} = 7 \cdot 10^7 \\
\chi_{||}/\chi_{\perp} = 1 \cdot 10^9
\end{array} \]
Heat Diffusion in realistic Tokamak Geometry

1. Motivation

2. Model
 - Heat Diffusion Equation
 - Coordinate system
 - Coordinate alignment

3. Magnetic Islands
 - Temperature flattening
 - Comparison to TEXTOR

4. Ergodic Layers
 - Temperature flattening
 - FIR-NTMs

5. Edge Ergodization

6. Summary
Edge ergodization

- Perturbation coils planned for ASDEX Upgrade
- Among others aimed at the mitigation of edge localized modes (ELMs)
- Ergodization of the plasma edge
- Increased heat conduction due to the transport of electrons along magnetic field lines
Spitzer conductivity assumed
Significant drop of edge temperature gradient observed
Very sensitive to plasma parameters!
Summary

- Unsheared helical coordinates
- Realistic $\chi_\parallel/\chi_\perp$ possible (islands, ergodic layers, ergodic edge)
- Magnetic islands: Temperature flattening for $w/w_c \gtrsim 2$
- Comparison to TEXTOR
 - ECE timetraces vs. toroidal cuts
 - Automatic matching
 - Problems with perturbation profile
- Ergodic layers
 - Temperature flattening at the ergodic layer for large $\chi_\parallel/\chi_\perp$
- NTM
 - Resonant bootstrap current perturbation drives island
 - FIR-NTM: Frequent amplitude drop
 - Possible explanation: Ergodization reduces island drive
- Edge: Ergodization might increase radial heat transport
Thanks for your attention!

Acknowledgements

Prof. Dr. Sibylle Günter · Dr. Qingquan Yu · Dr. Erika Strumberger · Klaus Reuter

References

Most of the results shown in this talk have been published in Hölzl et al. (2008).

S. Günter, A. Gude et al. (2001).

A. Gude, S. Günter et al. (2002).