Non-linear ELM and RMP Modeling in Realistic Tokamak Geometries

G. Dif-Pradalier 1, F. Orain 1, M. Bécoulet 1, A. Fil 1, V. Grandgirard 1, M. Hoelzl 2, G. T. A. Huijsmans 3, G. Latu 1, E. Nardon 1, B. Nkonga 4, S. Pamela 5, Ch. Passeron 1, A. Ratnani 1

1CEA, IRFM, F-13108 St. Paul-lez-Durance cedex, France
2EURATOM/Max-Planck-Institut, Garching, Germany
3ITER Organization, 13115 Saint-Paul-Lez-Durance, France
4Université de Nice, INRIA Sophia Antipolis, France
5EURATOM/CCFE Association, Culham Science Centre, UK
What is an Edge Localised Mode?

Periodic relaxation of heat & density

\[\rightarrow \text{steep } \nabla p \text{ (ballooning)} \]

\[\rightarrow \text{large edge current (peeling)} \]

MAST fast CCD camera [Kirk '06]
ELMs are harmful instabilities for the PFCs —the need to understand, predict & control ELMs in realistic geom.—

ELM power load: e^- gun @Kurchatov

Limits pedestal height & global confinement

- erosion, droplets, melting of tungsten
- Q=10 in ITER: $\Delta W_{ELM}^{ITER} \sim 17 \text{MJ} \sim 15\% \ W_{ped}$
 - in $\sim 250-500 \ \mu s$
- acceptable ELM: $\Delta W_{ELM} \sim 2 - 3 \text{MJ}$
 - \downarrow divertor may only survive a few ELMs...

- e^- gun power load based on empirical extrapolation —not understood
- power load cycles (~1000) at low power show intense material degradation
ELMs are harmful instabilities for the PFCs
— the need to understand, predict & control ELMs in realistic geom.—

Limits pedestal height & global confinement

- erosion, droplets, melting of tungsten
- \(Q=10 \) in ITER: \(\Delta W_{ELM}^{\text{ITER}} \sim 17 \text{MJ} \sim 15\% \ W_{ped} \)
 [in \(\sim 250-500 \ \mu\text{s} \)]
- acceptable ELM: \(\Delta W_{ELM} \sim 2 - 3 \text{MJ} \)
 \[\Rightarrow \] divertor may only survive a few ELMs...

Common thread: what requirements for an accurate description of ELMs & RMPs?

1. the tool: the reduced MHD code \textsc{JOREK}
2. evaluating the ELM energy deposition in \textsc{ITER}
3. added physics: diamagnetics & RMPs
4. going further: divertor physics

ELMy power load: \(e^- \) gun @Kurchatov

Guilhem Dif-Pradalier

ICNSP ★ Beijing ★ September 2013
Requirements for an accurate description of ELMs & RMPs

1. the tool: the reduced MHD code JOREK
2. The ELM energy deposition in ITER
3. Added physics: diamagnetics & RMPs
4. Going further: divertor physics
JOREK: developed with the specific aim to simulate ELMs

- Originally developed at CEA Cadarache \[\text{[Huijsmans '07, Czarny '08]}\]
- Non-linear reduced MHD in toroidal geometry
 \[\text{next slide: dens., temp., elec. potential (perp. flow), para. velocity, polo. flux]}\]
- Full MHD in development

- Domain:
 - Closed & open field lines, X-point
 - b.c.: Mach one, free outflow at divertor target

- Discretisation:
 - Cubic Bezier finite elements in the poloidal plane
 - Fourier series in toroidal angle

- Time stepping: fully implicit Crank-Nicholson

- Solver sparse matrices (PastiX library): \(10^7\) degrees of freedom

- Parallelisation using MPI/OpenMP: typically 256 — 1500 processors

- Pellet ELM triggering \[\text{[Huijsmans '10]}\]
- ELMs in JET \[\text{[Pamela '11]}\]
- RMP field penetration \[\text{[Bécoulet '12, Orain '13]}\]
R-MHD equations, including: SOL flows, source $S_{\nu \varphi}$, two-fluid **diamagnetic** rotation & **NC poloidal** viscosity

1—density:
\[
\frac{\partial}{\partial t} \rho = - \nabla \cdot (\rho \mathbf{v}) + \nabla \cdot (D_\perp \nabla_\perp \rho) + S_\rho \]

[Huijsmans ’09, Orain ’13]

2—temperature:
\[
\rho \frac{\partial}{\partial t} T = -\rho \mathbf{v} \cdot \nabla T - (\gamma - 1) \rho T \nabla \cdot \mathbf{v} + \nabla \cdot (\kappa_\perp \nabla_\perp T + \kappa_\parallel \nabla_\parallel T) + S_T
\]

3—perp. and parallel momentum:
\[
\mathbf{e}_\varphi \cdot \nabla \times \left(\rho \frac{\partial}{\partial t} \mathbf{v} = -\rho (\mathbf{v} \cdot \nabla) \mathbf{v} - \nabla (\rho T) + \mathbf{J} \times \mathbf{B} + \mu \Delta \mathbf{v} \quad -\nabla \cdot \Pi^{\text{neo}} + S_{\nu \varphi} \right)
\]

4—induction:
\[
\frac{\partial}{\partial t} \mathbf{A} = -\eta \mathbf{J} \quad -\frac{m}{\rho e} \nabla_\parallel (\rho T) + \mathbf{v} \times \mathbf{B} - F_0 \nabla \phi
\]

5—B field & closure:
\[
\mathbf{B} = \frac{F_0}{R} \mathbf{e}_\varphi + \frac{\nabla \psi(t)}{R} \times \mathbf{e}_\varphi \quad ; \quad \eta = \eta_0 \left(\frac{T}{T_0} \right)^{-3/2} \quad ; \quad \mathbf{v} = -R \nabla \phi(t) \times \mathbf{e}_\varphi + v_\parallel(t) \mathbf{B} + \mathbf{v}_*
\]

7—boundary conditions:

- Zero perturbations on wall aligned with last flux surface
- Bohm boundary conditions on the target: $v_\parallel = \pm c_s$; $\kappa_\parallel \mathbf{b} \cdot \nabla T = (\gamma - 1) n T c_s$
A typical run — e.g. in ITER geometry

- Initial grid: polar grid for Bézier elements
- Flux-aligned grid including X-point(s)
- Radial and poloidal grid meshing: divertor & wall b.c.
- Equilibrium flows: $n = 0$ harmonic
- Time-integration: $\forall n$ harmonics
- Postprocessing
A typical run —e.g. in ITER geometry

- Initial grid: polar grid for Bézier elements
- **Flux-aligned grid including X-point(s)**
- Radial and poloidal grid meshing: divertor & wall b.c.
- Equilibrium flows: \(n = 0 \) harmonic
- Time-integration: \(\forall n \) harmonics
- Postprocessing
A typical run — e.g. in ITER geometry

- Initial grid: polar grid for Bézier elements
- Flux-aligned grid including X-point(s)
- Radial and poloidal grid meshing: divertor & wall b.c.
- Equilibrium flows: $n = 0$ harmonic
- Time-integration: $\forall n$ harmonics
- Postprocessing
A typical run —e.g. in ITER geometry

- Initial grid: polar grid for Bézier elements
- Flux-aligned grid including X-point(s)
- Radial and poloidal grid meshing: divertor & wall b.c.
- **Equilibrium flows:** $n = 0$ harmonic
- Time-integration: $\forall n$ harmonics
- Postprocessing
A typical run — e.g. in ITER geometry

- Initial grid: polar grid for Bézier elements
- Flux-aligned grid including X-point(s)
- Radial and poloidal grid meshing: divertor & wall b.c.
- Equilibrium flows: \(n = 0 \) harmonic
- Time-integration: \(\forall n \) harmonics
- Postprocessing
Requirements for an accurate description of ELMs & RMPs

1. the tool: the reduced MHD code JOREK
2. The ELM energy deposition in ITER
3. Added physics: diamagnetics & RMPs
4. Going further: divertor physics
ELM size, wetted area & peak heat/particle load: the prediction for ITER is both uncertain & crucial

F4E-GRT265:

« Evaluation of edge MHD stability and uncontrolled ELM energy losses for ITER H-mode plasmas in non-active, DD and DT operational scenarios »

Known limitations: a realistic ELM computation in ITER is yet out-of-scope.

State-of-the-art: preliminary attempt to compute heat & particle deposition in 15MA/5.3T ITER

[Maget '12, Dif-Pradalier & Bécoulet '13]
State-of-the-art...yet many unknowns

- **particle loss in ELM:** \(\sim 3.4\% \)
- **energy loss in ELM:** 5MJ out of 452.5MJ \(\sim 1.1\% \) energy content

Going beyond...

- **grid:**
 - aligned v.s. adaptive [Ratnani]
 - low \(\eta_0 \Rightarrow \) large grid \(\Rightarrow \) memory
- **memory:** multi-harmonics needed for turb. & \(\mathbf{E} \times \mathbf{B} \) shear \(\Rightarrow \) large in implicit models
- **time-stepping:** fast parallel dyn. v.s. perp.
- **boundaries:** interaction with chamber magn. connection, free boundary [STARWALL]

\[\begin{array}{|c|c|c|}
\hline
\text{Resistivity} & \eta_0 = 10^{-6} & 10^{-10} \\
\text{Parallel/perp. heat cond.} & \kappa || / \kappa _\perp = 810^8 & 10^{11} \\
\hline
\end{array} \]

\(\Rightarrow \) how does the ELM computation change when adding new physics?
Requirements for an accurate description of ELMs & RMPs

1. the tool: the reduced MHD code JOREK
2. The ELM energy deposition in ITER
3. Added physics: diamagnetics & RMPs
4. Going further: divertor physics
Diamagnetic rotation ω_\star seems instrumental to access crash cycles.

why a cycle?

- **usually:** initial unstable profiles ∇p, I \rightarrow single relaxation
- **1st relax.:** "unphysical"? \rightarrow analog. sawteeth [q–profile, reconn. dyn.] [Lütjens '09]
- **assess dynamics with** self-consistent background flows, electric field & mode phasing

Energy of the ELM (n=6 only)

- $\omega_\star = 0$

Kinetic energy of the modes n=2,4,6,8

- $\omega_\star \neq 0$

[Orain '13]
Ongoing work: diamagnetic rotation reduces the ELM size & frequency

- when including dia. rotation...
 - heat deposited on divertor is reduced when $\omega_* \neq 0$

Power on divertor

<table>
<thead>
<tr>
<th>t/t_A</th>
<th>Integrated power (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>10^0</td>
</tr>
<tr>
<td>3000</td>
<td>10^1</td>
</tr>
<tr>
<td>3500</td>
<td>10^2</td>
</tr>
<tr>
<td>4000</td>
<td>10^3</td>
</tr>
<tr>
<td>4500</td>
<td>10^2</td>
</tr>
<tr>
<td>5000</td>
<td>10^1</td>
</tr>
</tbody>
</table>

$\omega^* = 0$

$\omega^* = \omega^*_\text{ref}$

ELM freq. ↑ when $\omega_* \downarrow$

- ELM size & dynamics → 2-fluid dia. rotation important

W_{mag} of the mode $n=6$: ω^* scan

$\omega^*_\text{ref}/2$

ω^*_ref

[Orain '13]

Guilhem DIF-PRADALIER
RMPs: some very contrasted results...beg for a better understanding

- External coils apply static Resonant Mag. Perturb.
- ergodic edge
- radial transport
- $\nabla p < $ instability threshold

- same “vacuum ergodization”, different effects: suppress, mitigate, trigger, ...

- RMPs with plasma response
- RMPs / ELMs interaction
- Density pump-out
- Rotation braking

Guilhem Dif-Pradalier
ICNSP Beijing September 2013
Ongoing work: ELMs are mitigated \Rightarrow power in divertor is $\sim 10x$ smaller with RMPs

Power [in MW] deposited on the divertor

[Bécoulet '13]

[Diagram showing power deposition over time with and without RMPs]

with RMPs

outer divertor

inner divertor

without RMPs
Requirements for an accurate description of ELMs & RMPs

1. the tool: the reduced MHD code JOREK
2. The ELM energy deposition in ITER
3. Added physics: diamagnetics & RMPs
4. Going further: divertor physics
Importing divertor physics: sources, neutrals & geometry ➔ a strong impact on the SOL flows

- Flows ➔ strong influence on onset & development of instabilities
 ➔ supersonic transitions in JOREK: a surprise?
- \{S, neutrals, geom.\} ➔ strong influence on onset & structure of flows

Supersonic transition in the SOL driven by plasma source inversion
Importing divertor physics: sources, neutrals & geometry → a strong impact on the SOL flows

- Flows → strong influence on onset & development of instabilities
 ↓ supersonic transitions in JOREK: a surprise?
- \{S, neutrals, geom.\} → strong influence on onset & structure of flows

Supersonic transition in the SOL driven by plasma source inversion

\[\mathcal{A} = \frac{2M}{1 + M^2} \quad \text{[Ghendrih '12, Bufferand '13]} \]

\[\frac{\partial \mathcal{A}}{\partial s} \propto (S_{\text{perp}} + S_{\text{ionization}}) \]

- If \(\partial_s \mathcal{A} \leq 0 \) target plates \(\Rightarrow M \geq 1 \) satisfy Bohm

- \(S_{\text{perp}} + S_{\text{ioniz.}} \) near target plates
 - \(< 0 \) → supersonic
 - \(> 0 \) → subsonic

\[S_{\text{perp}} > 0 \]

supersonic flows
Importing divertor physics: sources, neutrals & geometry ➔ strong impact on the SOL flows

- Flows ➔ strong influence on onset & development of instabilities
 ↓ supersonic transitions in JOREK: a surprise?
- \{S, neutrals, geom.\} ➔ strong influence on onset & structure of flows

Supersonic transition in the SOL driven by plasma source inversion

\[A = \frac{2M}{1+M^2} \quad \text{[Ghendrih '12, Bufferand '13]} \]

\[\frac{\partial A}{\partial s} \propto (S_{\text{perp}} + S_{\text{ionization}}) \]

- If \(\partial_s A \leq 0 \), target plates ➔ \(M \geq 1 \) satisfy Bohm
- \(S_{\text{perp}} + S_{\text{ioniz.}} \)
 - near target plates
 - \(< 0 \) ➔ supersonic
 - \(> 0 \) ➔ subsonic

NO supersonic flows
Importing divertor physics: sources, neutrals & geometry → a strong impact on the SOL flows

- Flows → strong influence on onset & development of instabilities [see ω_*]
 ↓ supersonic transitions in JOREK: a surprise?
- \{S, neutrals, geom.\} → strong influence on onset & structure of flows

Supersonic transition in the SOL driven by plasma source inversion

$$A = \frac{2M}{1+M^2} \quad [\text{Ghendrih '12, Bufferand '13}]$$

$$\frac{\partial A}{\partial s} \propto (S_{\text{perp}} + S_{\text{ionization}})$$

- If $\partial_s A \leq 0$ near target plates $\Rightarrow M \geq 1$ satisfy Bohm

- $S_{\text{perp}} + S_{\text{ioniz.}} < 0$ \Rightarrow supersonic
 \Rightarrow supersonic flows

- $S_{\text{perp}} + S_{\text{ioniz.}} > 0$ \Rightarrow subsonic

Guilhem Dif-Pradalier ICNSP Beijing September 2013 25
SolEdge2D $\{n, u_\parallel, T\} +$ neutrals \rightarrow supersonic transitions understood in the SOL

[Bufferand '13]

Ionisation

low density, ITER

high density, ITER

detached, WEST

Mach$_\parallel$

supersonic subsonic supersonic

Guilhem Dif-Pradalier

ICNSP Beijing September 2013
Conclusions

First series of ELM computation for iter $[0^{th} \text{ order}]$, validated by ITER

Diamagnetic flows ω_\star:
- seem essential for ELM cycles
- reduce ELM size, increase freq.
- symmetrisation of the power deposition

ELM mitigation by RMPs

Supersonic flow transitions in SOL — divertor physics
- framework understanding becoming mature
- delicate balance: sources, neutrals [ionis.], B geom. ➔ all effects important

many numerical challenges remain, e.g. talk tomorrow by A. Ratnani
Additional material
JOREK in a nutshell

- non-linear reduced MHD in toroidal geometry
 - density, temperature, velocity & poloidal flux
 - ideal wall conditions on walls
 - Mach one, free outflow at divertor target

- closed & open field lines domain, X-point geom.
 - cubic finite elements, flux aligned poloidal grid
 - Fourier series in toroidal direction

- time stepping, solver & parallelism
 - fully implicit Crank-Nicholson
 - sparse matrices (PastiX): $\sim 10^7$ degrees of freedom
 - MPI/OpenMP over typically 256 – 1500 processors

- getting closer to the experiment...
 - exact geometry** & boundary conditions**
 - non-linear MHD over long time scales* ($\mu s \rightarrow s$)
 - realistic parameters*** [resistivity, parallel conductivity, collisionality]
 - one/several modes***, background turbulence****
JOREK, a European network to study edge MHD instabilities: ELMs & disruptions

- **ELM cycle & control**
 - ELMs
 [G. Dif-Pradalier, M. Bécoulet, S. Pamela]
 - Resonant Magnetic Perturbations (RMPs)
 [M. Bécoulet, F. Orain]
 - pellets injection, vertical kicks
 [G. Huijsmans, S. Futatani]

- **Disruptions**
 - VDE, β limit disruptions, density limit
 [C. Reux, E. Nardon, A. Fil]
 - NTMs control with ECCD
 [IO+FOM]

ANRs: ASTER (2006-2009), ANIKA (2009-2012), ANEMOS (2010-2013), A2T2 (2010-2013)

Grants: F4E-2011-GRT-265

“Jorek team”: ~30 throughout Europe

International:
- **JOREK**
 [Huijsmans ‘07]
- **M3D–C1**
 [Ferraro ‘09]
- **XGC0**
 [Park ‘07]
- **BOUT++**
 [Dudson ‘09]
ELM size, wetted area & peak heat/particle load: the prediction for ITER is both uncertain & crucial

ELM ≡ MHD instability destabilised by pressure & current gradients in the H-mode pedestal

- **stringent operational limits:** $W_{ELM}/W_{ped} \sim 15\%$ in ~ 250-500 µs

- **ELM energy content:** W_{ELM} ↗ when coll. ↓ [Loarte ’03, Pamela ’10, Zarzoso ’11]

- **ELM energy deposition area:** does the power density ↗ when W_{ELM} ↗?

- **peak heat load localisation:** changes during ELM [Thomsen ’10]

Gr#265 ≡ study these aspects in realistic iter geometry and standard [15MA, 6keV] scenario

Guilhem Dif-Pradalier

ICNSP ⭐ Beijing ⭐ September 2013
Physics forewords. An acceptable ELM in ITER?

[ELM power loads: conservative; broadening not taken into account]

- Uncontrolled ELMs in ITER: $\sim 20\text{MJ at } 15\text{MA}, Q = 10$
 - acceptable limit for material damage: $0.5\ \text{MJ m}^{-2}, \Delta W_{\text{ELM}}^\text{contr.} \sim 0.7\ \text{MJ}$

- A significant broadening of ELM footprint could increase uncontrolled ELM operation from $6\text{MA} (A_{\text{ELM}} = A_{ss})$ to $9\text{MA} (A_{\text{ELM}} = 4A_{ss})$
 - No large influence on ELM size limit at 15MA (small ELMs)

Ongoing effort: assess energy & particle deposition for Iter

- realistic parameters challenging: ν_*, resistivity η, transp. anisotropy $\chi_{||}/\chi_{\perp}$, size, shape...
State-of-the-art...yet many unknowns

- **particle loss in ELM:** $\sim 3.4\%$
- **energy loss in ELM:** 5MJ out of 452.5MJ $\sim 1.1\%$ energy content
- **near-symmetric power deposition for a large ELM**

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistivity η_0</td>
<td>10^{-6}</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>Parallel/perp. heat cond. $\kappa_{\parallel}/\kappa_{\perp}$</td>
<td>810^8</td>
<td>10^{11}</td>
</tr>
<tr>
<td>Diamagnetics</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Neoclassics</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Neutrons</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Radiation</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Harmonics</td>
<td>single $[n = 9]$</td>
<td></td>
</tr>
<tr>
<td>ELM cycle</td>
<td>single relax.</td>
<td></td>
</tr>
</tbody>
</table>

What happens when relaxing some of the above limitations?