Nonlinear Reduced Magnetohydrodynamic Simulations of Edge-Localized Modes in Tokamak Plasmas

Isabel Krebs

M. Hoelzl, K. Lackner, S. C. Jardin, S. Günter
1 Introduction – JOREK & ELMs

2 ELM simulations

3 Interpretation

4 Summary & Outlook
Introduction – JOREK & ELMs

ELM simulations

Interpretation

Summary & Outlook
Introduction

JOREK: reduced MHD

- JOREK solves nonlinear reduced MHD equations in toroidal geometry
JORÉK solves nonlinear reduced MHD equations in toroidal geometry

\[
\frac{\partial \Psi}{\partial t} = \eta j - R [u, \Psi] - F_0 \frac{\partial u}{\partial \phi}
\]

\[
\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho v) + \nabla \cdot (D_\perp \nabla_\perp \rho) + S_\rho
\]

\[
\frac{\partial (\rho T)}{\partial t} = -v \cdot \nabla (\rho T) - \gamma \rho T \nabla \cdot v + \nabla \cdot (K_\perp \nabla_\perp T + K_\parallel \nabla_\parallel T) + S_T
\]

\[
e_\phi \cdot \nabla \times \left\{ \rho \frac{\partial v}{\partial t} = -\rho (v \cdot \nabla) v - \nabla p + j \times B + \mu \Delta v \right\}
\]

\[
B \cdot \left\{ \rho \frac{\partial v}{\partial t} = -\rho (v \cdot \nabla) v - \nabla p + j \times B + \mu \Delta v \right\}
\]
JOREK: reduced MHD

- JOREK solves nonlinear reduced MHD equations in toroidal geometry

\[
\begin{align*}
\frac{\partial \Psi}{\partial t} &= \eta j - R \left[u, \Psi \right] - F_0 \frac{\partial u}{\partial \phi} \\
\frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho v) + \nabla \cdot (D_{\perp} \nabla_{\perp} \rho) + S_\rho \\
\frac{\partial (\rho T)}{\partial t} &= -v \cdot \nabla (\rho T) - \gamma \rho T \nabla \cdot v + \nabla \cdot (K_{\perp} \nabla_{\perp} T + K_{||} \nabla_{||} T) + S_T \\
e_{\phi} \cdot \nabla \times \left\{ \rho \frac{\partial v}{\partial t} = -\rho (v \cdot \nabla) v - \nabla p + j \times B + \mu \Delta v \right\} \\
B \cdot \left\{ \rho \frac{\partial v}{\partial t} = -\rho (v \cdot \nabla) v - \nabla p + j \times B + \mu \Delta v \right\} \\
\quad \quad \quad \quad \quad \quad \quad j \equiv -j_{\phi} = \Delta^* \Psi \\
\omega \equiv -\omega_{\phi} = \nabla_{\text{pol}}^2 u
\end{align*}
\]
JOREK: reduced MHD

- JOREK solves nonlinear reduced MHD equations in toroidal geometry

\[
\frac{\partial \Psi}{\partial t} = \eta j - R [u, \Psi] - F_0 \frac{\partial u}{\partial \phi}
\]

\[
\frac{\partial \rho}{\partial t} = - \nabla \cdot (\rho v) + \nabla \cdot (D_\perp \nabla_\perp \rho) + S_\rho
\]

\[
\frac{\partial (\rho T)}{\partial t} = - v \cdot \nabla (\rho T) - \gamma \rho T \nabla \cdot v + \nabla \cdot (K_\perp \nabla_\perp T + K_\parallel \nabla_\parallel T) + S_T
\]

\[
\mathbf{e}_\phi \cdot \nabla \times \left\{ \rho \frac{\partial v}{\partial t} = - \rho (v \cdot \nabla) v - \nabla p + j \times B + \mu \Delta v \right\}
\]

\[
\mathbf{B} \cdot \left\{ \rho \frac{\partial v}{\partial t} = - \rho (v \cdot \nabla) v - \nabla p + j \times B + \mu \Delta v \right\}
\]

\[
j \equiv -j_\phi = \Delta^* \Psi
\]

\[
\omega \equiv -\omega_\phi = \nabla_{\text{pol}}^2 u
\]

Definitions: \(\mathbf{B} \equiv \frac{F_0}{R} \mathbf{e}_\phi + \frac{1}{R} \nabla \Psi \times \mathbf{e}_\phi \) and \(v \equiv -R \nabla u \times \mathbf{e}_\phi + v_\parallel \mathbf{B} \)
JOREK: reduced MHD

- JOREK solves nonlinear reduced MHD equations in toroidal geometry

\[
\frac{\partial \Psi}{\partial t} = \eta j - R [u, \Psi] - F_0 \frac{\partial u}{\partial \phi}
\]

\[
\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \vec{v}) + \nabla \cdot (D_\perp \nabla_\perp \rho) + S_\rho
\]

\[
\frac{\partial (\rho T)}{\partial t} = -\vec{v} \cdot \nabla (\rho T) - \gamma \rho T \nabla \cdot \vec{v} + \nabla \cdot (K_\perp \nabla_\perp T + K_\parallel \nabla_\parallel T) + S_T
\]

\[
\vec{e}_\phi \cdot \nabla \times \left\{ \rho \frac{\partial \vec{v}}{\partial t} = -\rho (\vec{v} \cdot \nabla) \vec{v} - \nabla p + j \times \vec{B} + \mu \Delta \vec{v} \right\}
\]

\[
\vec{B} \cdot \left\{ \rho \frac{\partial \vec{v}}{\partial t} = -\rho (\vec{v} \cdot \nabla) \vec{v} - \nabla p + j \times \vec{B} + \mu \Delta \vec{v} \right\}
\]

\[
j \equiv -j_\phi = \Delta^* \Psi
\]

\[
\omega \equiv -\omega_\phi = \nabla^2_{\text{pol}} u
\]

Definitions: \(\vec{B} \equiv \frac{F_0}{R} \vec{e}_\phi + \frac{1}{R} \nabla \Psi \times \vec{e}_\phi \) and \(\vec{v} \equiv -R \nabla u \times \vec{e}_\phi + \nu_\parallel \vec{B} \)

Variables: \(\Psi, u, \nu_\parallel, \rho, T, j, \omega \)
Discretization

- **poloidal plane**: 2D Bézier finite elements

\[
P(s, t) = \sum_{i=0}^{3} \sum_{j=0}^{3} P_{ij} B_i(s) B_j(t)
\]

- **toroidal direction**: Fourier decomposition
- **fully implicit time stepping**
Grid generation

- equilibrium is computed on initial polar grid
- flux surface aligned X-point grid is generated
- grid can be refined in the regions of interest
Introduction

Grid generation

▷ equilibrium is computed on initial polar grid
▷ flux surface aligned X-point grid is generated
▷ grid can be refined in the regions of interest

Boundary conditions

▷ ideally conducting wall and modified Bohm
Introduction

Edge-localized modes

- Relaxation-oscillation instability at edge of H-mode plasmas
- Driven by large edge pressure gradient & edge current density
- Eject energy & particles from plasma
- Relevant for future fusion devices
 - Help to control particle & impurity content
 - High heat fluxes can damage plasma facing components

→ Theoretical comprehension of ELMs is crucial to predict and control ELM properties
Introduction

Experimental observations

- **linear theory**: intermediate toroidal mode numbers are most unstable
Introduction

- **linear theory**: intermediate toroidal mode numbers are most unstable
- **recent experimental observations (TCV)**: toroidal mode structure often dominated by low-n components

![Fourier spectrum of measured ELM](image)

Example of measured ELM Fourier spectrum

Dominant toroidal components in ELMy discharge

1 Introduction – JOREK & ELMs

2 ELM simulations

3 Interpretation

4 Summary & Outlook
ELM simulations

Parameters & geometry

- simulations are based on typical type-I ELMy ASDEX Upgrade discharge
 - plasma parameters based on ASDEX Upgrade, but larger resistivity ($S \approx 10^5$)
 - ASDEX Upgrade geometry including separatrix, X-point and open field lines
ELM simulations

- simulations are based on typical type-I ELMy ASDEX Upgrade discharge
 - plasma parameters based on ASDEX Upgrade, but larger resistivity ($S \approx 10^5$)
 - ASDEX Upgrade geometry including separatrix, X-point and open field lines
- large set of included toroidal Fourier harmonics ($n = 1, 2, \ldots, 16$)
ELM simulations

Evolution of the perturbation

Isabel Krebs Nonlinear Reduced MHD Simulations of ELMs in Tokamak Plasmas CEMM Meeting Nov. 2013
ELM simulations

Evolution of the perturbation

linear phase
ELM simulations

Evolution of the perturbation

linear phase \rightarrow early nonlinear phase
ELM simulations

Evolution of the perturbation

linear phase \rightarrow early nonlinear phase \rightarrow saturation

Isabel Krebs
Nonlinear Reduced MHD Simulations of ELMs in Tokamak Plasmas
CEMM Meeting Nov. 2013
1 Introduction – JOREK & ELMs

2 ELM simulations

3 Interpretation

4 Summary & Outlook
Interpretation

Simple quadratic coupling model

Idea: ”sum & difference mode number generation”
Simple quadratic coupling model

Interpretation

Idea: "sum & difference mode number generation"

- superposition of harmonics j & k \rightarrow generation of $i = |j \pm k|$
Interpretation

Simple quadratic coupling model

Idea: "sum & difference mode number generation"

- superposition of harmonics j & k $\xrightarrow{\text{quadratic terms}}$ generation of $i = \lvert j \pm k \rvert$

\Rightarrow time evolution of amplitude A_i

$$\frac{\partial A_i}{\partial t} = \gamma_i A_i + \gamma_{jk} A_j A_k$$

linear growth coupling
Interpretation

Simple quadratic coupling model

Idea: "sum & difference mode number generation"

\[\Delta \text{superposition of harmonics } j \& k \xrightarrow{\text{quadratic terms}} \text{generation of } i = |j \pm k| \]

\[\Rightarrow \text{time evolution of amplitude } A_i \]

\[\frac{\partial A_i}{\partial t} = \gamma_i A_i + \gamma_{jk}^i A_j A_k \]

\(\gamma_i \): linear growth rate

\[\leftrightarrow \text{constant } \Rightarrow \text{no saturation effects included} \]
Interpretation

Simple quadratic coupling model

Idea: ”sum & difference mode number generation”

- superposition of harmonics j & k \rightarrow generation of $i = |j \pm k|$

\implies time evolution of amplitude A_i

$$\frac{\partial A_i}{\partial t} = \gamma_i A_i + \gamma^i_{jk} A_j A_k$$

γ_i: linear growth rate

\Rightarrow constant \Rightarrow no saturation effects included

γ^i_{jk}: coupling constant

\Rightarrow constant \Rightarrow mode rigidity assumed
Simple quadratic coupling model

\[\frac{\partial A_i}{\partial t} = \gamma_i A_i + \sum_{j=1}^{16} \sum_{k=1}^{16} \gamma_{jk}^i A_j A_k \delta(i \pm j \pm k) \]

\[\text{for a set of harmonics } i = 1, 2, ..., 16 \]

\[\text{set of coupled nonlinear differential equations reproduces evolution of toroidal Fourier spectrum in JOREK simulations} \]
Interpretation

Simple quadratic coupling model

\[\frac{\partial A_i}{\partial t} = \gamma_i A_i + \sum_{j=1}^{16} \sum_{k=1}^{16} \gamma_{jk} A_j A_k \delta(i \pm j \pm k) \]

\(\downarrow \) for a set of harmonics \(i = 1, 2, \ldots, 16 \)

\(\uparrow \) set of coupled nonlinear differential equations reproduces evolution of toroidal Fourier spectrum in JOREK simulations

\(\uparrow \) relevant coupling constants: \(\gamma_{9,10}^1, \gamma_{8,10}^2, \gamma_{7,10}^3, \gamma_{6,10}^4, \gamma_{7,8}^{15}, \gamma_{7,9}^{16} \)
Interpretation

Results of simple model

The simple quadratic coupling model reproduces JOREK results in the early nonlinear phase. This model provides an explanation for the strong low-n components observed in experiments.

![Graph showing energy vs. time step for different toroidal mode numbers.](image-url)
simple quadratic coupling model reproduces JOREK results in early nonlinear phase

model gives explanation for strong low-n components in experiments
Isabel Krebs
Nonlinear Reduced MHD Simulations of ELMs in Tokamak Plasmas
CEMM Meeting Nov. 2013
Linearly unstable $n = 1$ extends over a large part of the plasma core.
Interpretation

Localization of driven harmonics

- linearly unstable \(n = 1 \) extends over a large part of the plasma core
- nonlinearly driven \(n = 1 \) is localized at plasma edge (where driving harmonics are maximal and in phase)
1 Introduction – JOREK & ELMs

2 ELM simulations

3 Interpretation

4 Summary & Outlook
Summary...

- nonlinear reduced MHD **ELM simulations** based on ASDEX Upgrade
- large set of included toroidal harmonics
- **subdominant low-n harmonics** become important due to **nonlinear drive**
- \(n = 1 \) reaches energies comparable to linearly dominant harmonics
- **correspondence to experimental observations** of dominant low-n components
- **simple quadratic interaction model** reproduces and explains early nonlinear evolution of toroidal harmonics in JOREK simulations
- spatial structure of \(n = 1 \) becomes localized at edge when nonlinearly driven

… and Outlook

- enable more realistic resistivity
- analyze how nonlinear interaction of toroidal harmonics is influenced by
 - diamagnetic drift effects
 - sheared toroidal plasma rotation
Thank you for your attention!

References

Simulations

Experiment

JOREK

Acknowledgements

R. P. Wenninger
ASDEX Upgrade Team
Max-Planck/Princeton Center for Plasma Physics
HELIOS at IFERC-CSC
Simple coupling model

Energy conservation

\[\frac{\partial A_i}{\partial t} = \gamma_i A_i + \sum_{j=1}^{16} \sum_{k=1}^{16} \gamma_{jk}^i A_j A_k \delta(i \pm j \pm k) \quad \text{for } i = 1, 2, ..., 16 \]

- linear terms \(\rightarrow \) influx of energy
- nonlinear terms \(\rightarrow \) exchange of energy between different harmonics (total energy should be conserved)

\[0 = \frac{\partial E_{tot}}{\partial t} \propto \frac{\partial}{\partial t} \sum_i A_i^2 \quad (\text{only nonlinear terms}) \]

\(\Rightarrow \) additional constraints for the coupling constants (12 free parameters remain)
Simple coupling model

Energy conservation

Isabel Krebs
Nonlinear Reduced MHD Simulations of ELMs in Tokamak Plasmas
CEMM Meeting Nov. 2013