Non-linear Simulations of ELMs, RMPs, and ELM-RMP Interaction

M. Hoelzl, F. Orain, A. Lessig, M. Becoulet
1 JOREK

2 Selected Results
 ELMs
 RMPs
 Interaction

3 Summary + Outlook
1 JOREK

2 Selected Results
 ELMs
 RMPs
 Interaction

3 Summary + Outlook
Non-linear MHD in realistic tokamak X-point geometry

- Bezier finite elements + toroidal Fourier decomposition
- Fully implicit time integration
- Hybrid MPI + OpenMP parallelization
- Supercomputers like HELIOS and HYDRA

Originally developed by Guido Huysmans

Further developed by CEA, IPP, ITER, CCFE, ...

ER 2014 (PI M. Becoulet): ELM Physics
ER 2015–2017 (PI M. Hoelzl): ELM and Disruption Physics, Numerics
Reduced MHD with diamagnetic, neoclassical and toroidal rotation
 - ELMs, Pellets, RMPs

Extensions for neutrals and resistive walls
 - Deuterium MGI, Disruptions, (Impurity MGI), (Runaways)
 - QH-Mode, VDEs, RWMs, (Halo Currents)

Full MHD model

Typically increased resistivity due to computational limitations
Reduced MHD with diamagnetic, neoclassical and toroidal rotation
- ELMs, Pellets, RMPs

Extensions for neutrals and resistive walls
- Deuterium MGI, Disruptions, (Impurity MGI), (Runaways)
- QH-Mode, VDEs, RWMs, (Halo Currents)

Full MHD model

Typically increased resistivity due to computational limitations
Reduced MHD with diamagnetic, neoclassical and toroidal rotation
 → ELMs, Pellets, RMPs

Extensions for neutrals and resistive walls
 → Deuterium MGI, Disruptions, (Impurity MGI), (Runaways)
 → QH-Mode, VDEs, RWMs, (Halo Currents)

Full MHD model

Typically increased resistivity due to computational limitations
1 JOREK

2 Selected Results
 ELMs
 RMPs
 Interaction

3 Summary + Outlook
Selected Results

Localized ELMs

▷ Poloidally and toroidally localized ELMs
▷ Similar to Solitary Magnetic Perturbations

Selected Results

Localized ELMs

- Poloidally and toroidally localized ELMs
- Similar to Solitary Magnetic Perturbations

Non-linear mode coupling: n_1 and n_2 drive $n_1 \pm n_2$

Low-n harmonics driven to large amplitudes

Broadening of the spectrum

Similar to low-n observations on TCV

Selected Results

Full Crash

![Graph showing magnetic energies and time](image)

A. Lessig and M. Hölzl (unpublished)

- Based on AUG equilibrium
- Toroidal modes $n=0 \ldots 22$
- High/medium-n most unstable, low-n driven
- Crash followed by ballooning turbulence which prevents pedestal build-up

- Diamagnetic drift required (also for RMPs)
Selected Results

ELM Cycle

- Based on JET equilibrium
- Toroidal modes $n=0,2,4,6,8$
- Diamagnetic drift
- Periodic crashes

F. Orain, M. Becoulet, et al. *PPCF* (accepted)
Based on JET equilibrium
Toroidal modes $n=0, 2, 4, 6, 8$
Diamagnetic drift
Periodic crashes

Numerically complicated: $\propto \frac{\tau_{IC}}{\rho}$
Progress with ASDEX Upgrade cases
1 JOREK

2 Selected Results
 ELMs
 RMPs
 Interaction

3 Summary + Outlook
Based on JET equilibrium (pure n=2 field; fixed at boundary)
- Penetration: n=2 driven to large amplitude by external field
- Islands, edge ergodization, rotation braking, separatrix deformation
- Strike point splitting
1 JOREK

2 Selected Results
 ELMs
 RMPs
 Interaction

3 Summary + Outlook
Based on JET equilibrium (pure n=2 field)
Mitigation like behaviour observed
Strongly reduced heat loads
Based on JET equilibrium (pure n=2 field)
Mitigation like behaviour observed
Strongly reduced heat loads
Not caused by reduced pressure gradient or 3D deformation
Caused by non-linear mode coupling
Based on JET equilibrium (pure n=2 field)

- Mitigation like behaviour observed
- Strongly reduced heat loads
- Not caused by reduced pressure gradient or 3D deformation
- Caused by non-linear mode coupling

Open: Resistivity dependence, quantitative analysis in comparison with experiment, mitigation/suppression conditions, consistent amplification model, pump-out mechanism
1 JOREK

2 Selected Results
 ELMs
 RMPs
 Interaction

3 Summary + Outlook
Summary + Outlook

▷ JOREK: Non-linear MHD in realistic X-point geometry
▷ Increased resistivity due to computational costs
▷ ELM and disruption physics

▷ Poloidally/toroidally localized ELMs
▷ Low-n features due to non-linear mode coupling
▷ Full crash simulation for ASDEX Upgrade
▷ ELM cycle with diamagnetic drift
▷ RMP penetration
▷ ELM mitigation due to non-linear mode coupling

▷ Significant work ahead: Physics and numerics – ER 2015-2017
Summary + Outlook

▷ Comparison to experiment with ASDEX Upgrade Team and linear theory with E. Strumberger

▷ ELMs A. Lessig, M. Hoelzl, F. Orain
 → ELM size and types
 → Filaments
 → Footprints
 → Time scales
 → Mode numbers
 → Pedestal profile evolution

▷ RMPs and ELM-RMP interaction F. Orain, M. Hoelzl
 → Deformation of flux surfaces/separatrix
 → Influence on rotation, electric field
 → Footprints and lobes
 → Mitigation suppression conditions
 → Kink/island response
 → Field amplification
 → Pump-out mechanism
References

Acknowledgements

- Erika Strumberger
- Isabel Krebs
- Karl Lackner
- Sibylle Günter
- Emmanuel Franck
- Eric Sonnendrücker
- Mike Dunne
- ASDEX Upgrade Team